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ABSTRACT 

Even assuming perfect attitude sensors and gyros, sensor measurements on a vibrating 

spacecraft have apparent errors.  These apparent sensor errors, referred to as pseudonoise, 

arise because gyro and sensor measurements are performed at discrete times.  This paper 

explains the concept of pseudonoise, quantifies its behavior, and discusses the effect of 

vibrations that are nearly commensurate with measurement periods.  Although pseudonoise 

does not usually affect attitude determination it does affect sensor performance evaluation. 

Attitude rates are usually computed from differences between pairs of accumulated 

angle measurements at different times and are considered constant in the periods between 

measurements.  Propagation using these rates does not reproduce exact instantaneous space-

craft attitudes except at the gyro measurement times.  Exact sensor measurements will there-

fore be inconsistent with estimates based on the propagated attitude.  This inconsistency 

produces pseudonoise. 

The characteristics of pseudonoise were determined using a simple, one-dimensional 

model of spacecraft vibration.  The statistical properties of the deviations of measurements 

from model truth were determined using this model and a range of different periods of sensor 

and rate measurements. 

This analysis indicates that the magnitude of pseudonoise depends on the ratio of the 

spacecraft vibration period to the time between gyro measurements and can be as much as 

twice the amplitude of the vibration.  In cases where the vibration period and gyro or sensor 

measurement period are nearly commensurate, unexpected changes in pseudonoise occur. 
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INTRODUCTION 

Assume that a spacecraft vibrates with a known frequency and amplitude.  The model 

used here contains three features: 

• True sinusoidal angular displacements of unit amplitude and unit frequency.  The 

angular displacements are sinusoidal. 

• Exact measurements of the angular displacement by two sensors.  Sensor displacement 

measurements are defined by their cadence (number of measurements made in one 

vibration period) and a phase of the first displacement measurement used. 

• Exact rate measurements by an integrating rate sensor.  This sensor provides inte-

grated rates from one rate measurement to the next at a rate sensor cadence and 

starting at an initial phase.  It is assumed that the integrated rate at the time of each 

rate measurement is exactly equal to the true angular displacement at that time.  Dis-

placements are estimated from rate measurements by interpolation or extrapolation. 

o Interpolated rates are most often used in post-processing when all of the data is 

available before processing.  In this case, the estimate of the displacement 

angle at any time is obtained by linear interpolation of the integrated rates 

before and after the time. 

o Extrapolated rates are most often used in real time processing when data is 

processed in the order in which it is generated.  In this case, the estimate of the 

displacement angle at any time is obtained by linear extrapolation of the two 

most recent integrated rate measurements. 

Attitude estimation filters which use rate data attempt to minimize the differences 

between the measured displacement and the displacement estimated (by interpolation or 

extrapolation) from the rate measurements. 

Even with exact measurements, true spacecraft vibrations cause an apparent noise in 

the attitude sensor.  This noise is referred to as pseudonoise.  The present paper describes the 

origin and properties of pseudonoise.  It arises because the linear interpolation or extrapola-

tion used to estimate displacements is not exact. 

Figure 1 illustrates the origin of pseudonoise.  In it, the sinusoidal line represents the 

true angular displacement of the spacecraft in one dimension.  On the sinusoidal line are 

circles representing rate sensor measurements of integrated displacements since the previous 

measurements.  Xs on the sinusoidal line represent attitude sensor measurements of the 

angular displacements.  All of the measurements are exactly on the line because sensors are 

assumed to have no error. 

At times other than those of rate measurements, the displacement is obtained either by 

interpolation (in the case of post-hoc batch least-squares (BLS) estimators), or by extrapola-

tion (in the case of real-time filters).  At the time of the displacement measurement (X), the 

extrapolated or interpolated displacement differs from the true measured displacement by a 

significant amount.  This difference is pseudonoise.  It arises solely from the fact that the 

function used to interpolate or extrapolate rate measurements (linear in this case) cannot 

reproduce the true spacecraft displacement between measurements. 
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Figure 1.  Illustration of Pseudonoise  

CHARACTERIZATION OF PSEUDONOISE 

All of the descriptions of pseudonoise in this paper shall be related to a sinusoidal 

vibration of unit frequency and unit amplitude.  Pseudonoise magnitudes are linear with vibra-

tion amplitude.  Characteristics that depend on the vibration frequency can be equivalently 

viewed as depending on the rate measurement cadence—the number of rate measurements 

that are made in a single vibration period.   

It is assumed that the rate measurements and displacement measurements are 

independent and exact.  Attitude sensor measurements are modeled as the exact displacements 

at each time.  Rate measurements are constructed from pairs of exact displacement 

measurements with rates assumed to be constant between these displacement measurements.  

This assumption produces results equivalent to those from a perfect Kalman filter, with zero 

sensor weight, starting from an exact initial attitude. 

In a simple, 1-dimensional model, the spacecraft vibration may be represented as a 

periodic angular displacement described by: 

 )sin(φθ φ =  (1) 

where φ is the phase at which the displacement, θ, occurs. In the notation used here, the 

phase, φ, is not limited to 2π, but increases without limit.  Pseudonoise is given in terms of the 
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measurement phase, φm, and phases of the two rate measurements, φ0 and φ1, that are used to 

compute the expected displacement, by: 

 expected,mmmp θθφ −=  (2) 

where 

 )sin( mm φθ =  (3) 
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Note that for interpolation, φ0 ≤ φm ≤ φ1; whereas, for extrapolation, it is assumed that  

(2φ1-φ0) ≥φm ≥φ1. 

It is clear from Figure 1 that pseudonoise depends strongly on the cadence of the rate 

measurements.  The high and low rate limits are considered next. 

High Rate Cadence 

As the cadence becomes large, the approximation of the rate by linear interpolation or 

extrapolation becomes more accurate, and the pseudonoise becomes small.  This is the case 

for very low frequency vibrations or very high frequency rate measurements.  As φ0 

approaches φ1: 
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and  

 mm θθ ≅expected,  (6) 

so the pseudonoise approaches zero,  Rate measurements follow the vibration well and 

pseudonoise is negligible.  This case is illustrated in Figure 2. 

Low Rate Cadence 

As the cadence becomes small, there are many complete vibrations between any 

adjacent pairs of rate measurements.  In this case, the vibration is at a high frequency 

compared to the rate measurements. As seen in Figure 3, rate measurements are bounded by 

the vibration amplitude divided by the relatively long time between measurements.  The 

calculated rates therefore tend to be small compared to those in the high rate cadence case.  
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Figure 2.  Pseudonoise with High Rate Cadence (Low Vibration Frequency) 

 

Figure 3.  Pseudonoise with Low Rate Cadence (High Vibration Frequency) 

 

In the low rate cadence case, the phase of the displacement measurement can be con-

sidered to be independent of the phase of the rate measurements.  The displacements θm and 
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θm,expected (in Eq. (2)) are uncorrelated, and the uncertainty of their difference is just the root-

sum-square of the uncertainty of the two terms. 

The standard deviation of θm is given by: 
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where the summation is over a large set of n measurements spanning many vibration periods 

and the integration is over continuous measurements in a single vibration period. 

The standard deviation of θm,expected depends on the phases of the two rate measure-

ments.  These phases, φ0 and φ1, can be equivalently represented by φ0 and ∆φ (∆φ = φ1 -φ0 ). 

Displacement θm,expected lies on a straight line between the points [φ0 , sinφ0] and [φ1 , sinφ1].  

Its standard deviation has been calculated for values of φ0 between 0 and 360 deg and of ∆φ 

between 360 to 720 deg.  The results are shown in Figure 4.  The form of the surface shown is 

similar for any complete 360 degree cycle of ∆φ. 

 

 

Figure 4.  Standard Deviation of the Expected Deviation Angle for Interpolated Rates 
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Intermediate Rate Cadence 

The most interesting cases arise when the rate cadence is similar to the vibration 

period.  Such cases were studied in the range of rate cadences from 0.1 to 10 times the vibra-

tion period.  For each value of cadence, the measured and expected displacements were cal-

culated over a large number of vibration cycles (~1000).  The differences between measured 

and expected displacements were calculated and the standard deviation of these differences 

saved.  It was verified that neither the phase of the first rate measurement, nor changes in the 

number of cycles affected the results significantly except in the case of resonance as described 

below.  Any influence from the initial phase is thoroughly averaged out by the large number 

of measurements and cycles.  The resulting standard deviations are shown in Figure 5. 

Figure 5 presents several interesting features: 

• When the rates are calculated by interpolation 

o The standard deviation of the pseudonoise increases with increasing rate meas-

urement cadence until a cadence of about 1, at which point it has a value equal 

to the amplitude of the vibration. 

o At cadences above 1, the standard deviation of the pseudonoise oscillates with 

rate measurement cadence between 1 and roughly 0.8 times the amplitude of 

the vibration. 

• When the rates are calculated by extrapolation 

o The standard deviation of the pseudonoise increases with increasing rate meas-

urement cadence until a cadence of about 0.57, at which it has a value equal to 

roughly 1.82 times the amplitude of the vibration. 

o At cadences above 0.57, the standard deviation of the pseudonoise oscillates 

with rate measurement cadence between 1 and roughly 1.7 times the amplitude 

of the vibration.  The minima of this oscillation match in cadence and standard 

deviation the maxima of the oscillations for interpolated values. 

• For both interpolation and extrapolation, the standard deviations form a smooth curve 

except at resonance conditions.  This smooth curve approaches a standard deviation of 

1 as the rate cadence approaches integer values.  When the ratio of the vibration 

frequency to the cadence is exactly an integer multiple of 0.5, the standard deviation 

of the pseudonoise jumps to 1/√2.  These singular points are due to resonances and are 

discussed below. 
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Figure 5.  Pseudonoise as a Function of Rate Measurement Cadence 

RESONANCES 

When the rate or sensor measurements are regularly spaced with respect to the 

vibration frequency, measurement standard deviations exhibit quite different patterns.  Under 

these resonant conditions the apparent noise depends strongly on initial measurement phase. 

Rate Measurement Cadence  

When the rate measurement cadence is an integer multiple of ½ the vibration freq-

uency in the one dimensional simulation, the pseudonoise exhibits unusual behavior.  This 

behavior can be attributed to a resonance between the vibration frequency and the rate 

cadence.  The resonance behavior is discussed separately for even and odd half-integer 

multiples of the frequency.  
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As described above, the standard deviation of the pseudonoise was found to be 1/√2 in 

these resonant cases.  This result is accurate and independent of initial phase for the cases 

where the rate measurement cadence is an even integer multiple of the half frequency (i.e., an 

integer multiple of the frequency).  This case is illustrated in Figure 6. 

Figure 6.  Calculated Rates for Rate Measurement Cadence Equal to Integer Multiple of 

Vibration Frequency, Illustrated at Several Initial Phases 

As seen in Figure 6, the rate calculated from rate measurements at cadences that are 

integer multiples of the vibration frequency is always zero.  As a result, the pseudonoise arises 

only from the sinusoidal variation of the displacement measurements and is independent of 

the rate measurements. 

Next, for cases where the rate measurement cadence is an odd integer multiple of the 

half frequency, the pseudonoise has different characteristics. This is illustrated in Figure 7. 
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Figure 7.  Calculated Rates for Rate Measurement Cadence Equal to Odd Integer 

Multiple of Half the Vibration Frequency, Illustrated at Two Initial Phases  

(Note: The Labels Used in Previous Figures Have Been Eliminated to Avoid Confusion.  

The Line Styles and Symbols are Identical to Those in Figure 6.) 

When the initial phase is zero, the results are as described above—calculated rates 

equal to zero and 1σ pseudonoise equal to 1/√2.  At different initial phases, the calculated 

rates are not zero and the pseudonoise magnitude varies.  Figure 8 shows the pseudonoise 

standard deviation as a function of initial phase for the case where the rate measurement 

cadence is exactly half of the vibration frequency. 
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Figure 8.  Pseudonoise Standard Deviation for Rate Measurement Cadence of 0.5,  

as a Function of Initial Phase 

Displacement Measurement Cadence 

If the displacement measurement cadence is an integer multiple of the vibration freq-

uency, all displacement measurements will be made at the same vibration phase.  The mean of 

the measured displacements will therefore be offset from the mean of the true displacements 

by an amount corresponding to the vibrational displacement at the time of each displacement 

measurement.  This will result in a systematic error in the displacement measurements. 

Near Resonance Conditions 

When either the rate or displacement measurement cadence is near resonance with the 

vibration frequency, the pseudonoise is similar to cases with exact resonance.  The significant 

difference between exact resonance and near resonance conditions is that in the near reso-

nance conditions the initial phase angle changes slightly in successive cycles whereas the 

behavior seen in resonance conditions therefore changes gradually with time—it follows the 

behavior of the resonance conditions with varying initial phase. 

SIMULATIONS 

The effect of pseudonoise was evaluated by simulating a system with pseudonoise and 

evaluating the apparent sensor noise.  The software used for evaluation of the pseudonoise 
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was the Multimission Three-Axis Stabilized Spacecraft (MTASS) Attitude Ground Support 

System (AGSS).  This system has been used operationally on many spacecraft over the last 12 

years. 

The simulation had the following characteristics: 

• Attitude:  The simulated attitude included a sinusoidal oscillation on one axis, 

imposed on an otherwise constant attitude.  The oscillation was generated by the 

function: 

  )sin()( 0ϕωθ += tAt  (8) 

 where θ(t) is the angular displacement on the axis of oscillation at time t, t is the time, 

A is the oscillation amplitude, ω is the frequency of oscillation, and ϕ0 is the phase at 

time zero.  The attitude at time t is a single axis rotation of θ(t).  For example, if the 

oscillation is about the x-axis: 
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 where M transforms vectors from a geocentric inertial (GCI) frame to the body frame. 

• Amplitude:  The noise statistics are proportional to the amplitude for small ampli-

tudes.  Amplitudes on the order of 10-20 arcsec were used. 

• Frequency:  The oscillation frequency was π/3 Hertz, where t is in seconds.  This 

value was chosen because it is irrational and therefore would result in no unintentional 

resonances. 

• Gyro Cadence:  Two sets of gyro cadences were used and the results combined.  The 

first set was generated so that the base 10 logarithms of the cadences were uniformly 

spaced between -1 and 1.  This provides a logarithmic spacing of cadences between 

0.1 and 10.  Since the oscillation frequency chosen was irrational, these cadences do 

not intentionally approach resonance. 

The second set of cadences were specifically chosen as the oscillation period multi-

plied by a number of values.  The values ranged from 0.1 to 1 in steps of 0.1 and  

1.5 to 10 in steps of 0.5.  This second set was expected to be near resonance with the 

oscillation. 

• Sensor Observations:  Two star trackers were simulated with boresights perpendicu-

lar to the axis about which the oscillation was generated and perpendicular to each 

other.  In each tracker, five stars were simulated.  The positions of the stars in the GCI 

frame (reference vectors) were kept constant and the body frame positions (simulated 

observations) for the stars at time t were generated by rotating the reference vectors by 

the attitude at that time. 

The results of the simulation are shown for two estimation methods.  Figure 9 shows a 

case where the attitude is determined using a Batch Least-Squares (BLS) estimator.  Figure 10 

shows a case where the attitude is determined using an Extended Kalman Filter (EKF).  For 

both estimators, observations were propagated using interpolated rates.  Identical sensor and 
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rate data were used for the BLS and EKF estimations.  Three hours of data were used with 

five simulated star observations in each tracker every 2 seconds.  In the EKF case, the first 

200 seconds of residuals (500 residuals) were omitted in computation of residual statistics to 

allow filter convergence. 

The similarity with the behavior predicted with a simple 1-dimensional model, as in 

Figure 5, is striking, but certain new observations can be made: 

1. The resonances at ½ integer values seen in Figure 5 do not occur in the 

simulations.  This result is not yet explained. 

2. Small, non-zero observation residuals were observed on the non-perturbed 

axes.  These residuals were less than 1 percent of the values on the perturbed 

axis.  

3. Comparison of Figures 9 and 10 indicates that the EKF is more sensitive to 

near resonance conditions than is the BLS estimator.  
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Figure 9.  Results of Batch Least-Squares Simulation of Pseudonoise 
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Figure 10.  Results of Extended Kalman Filter Simulation of Pseudonoise (With 

Interpolated Rates) 

5. Conclusions 

Pseudonoise is an interesting phenomenon that seldom has a critical impact on attitude 

determination accuracy.  Because pseudonoise generally has zero mean, it may influence the 

rapidity of filter convergence but will not often significantly influence the accuracy of the 

converged solution. 

Pseudonoise is most important when the rate measurement cadence is comparable to, 

or larger than, the vibration frequency and when the vibration amplitude is large.  Cases 

where pseudonoise is significant are generally limited by the fact that large amplitude 

vibrations seldom occur at high frequency because the total vibration energy increases with 

both frequency and amplitude.  Examples of spacecraft having vibrations, rate measurement 

cadences in the intermediate range described above, and significant vibration amplitudes are  

Aqua and ADEOS-II.  In both of these missions, the apparent star tracker noise was much 

larger than inherent star tracker noise because of pseudonoise. 
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Under some conditions, pseudonoise can affect attitude systems and should be con-

sidered: 

• In cases that are near resonance there are amplified effects that can vary slowly with 

time. 

• In evaluating on-orbit attitude sensor performance, significant portions of apparent 

sensor error can arise from pseudonoise. 

• The observed uncertainty of sensor measurements is a combination of the true sensor 

measurement uncertainty and the pseudonoise.  When the pseudonoise is large, 

different EKF tuning may be necessary to compute optimal attitudes. 


